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ABSTRACT 

Alzheimer’s disease (AD), a common fatal neurodegenerative disorder 

is manifested by core features of progressive memory impairment, 

visuospatial decline, aphasia, agnosia, loss of executive function and 

severe neuropsychiatric changes like hallucinations and depression. AD 

is characterized by cholinergic dysfunction, but treatments targeting 

the cholinergic system alone have yielded disappointing results. 

Present review focuses on the investigation of possible involvement of 

serotonin (5-HT) in pathogenesis of AD beside its versatile role in brain 

physiology. Serotonin has been implicated in almost every conceivable 

physiologic or behavioural function like affect, aggression, appetite, 

cognition, memory, sleep, emesis, endocrine functions, gastrointestinal 

functions, motor functions, neurotrophism, perception, sensory 

functions, sex, and vascular function etc. In addition to its physiological 

role, growing evidence suggests the neuromodulator serotonin also 

regulates the connectivity of the brain by modulating developmental 

cellular migration and cyto-architecture. Pathologically, it is involved in 

depression, aggression, anxiety and disturbances in food intake. This 

plethora of roles has consequently led to the development of many 

compounds of therapeutic value, including various antidepressant, 

antipsychotic and antiemetic drugs. Investigation of serotonin is 

encouraged by the act that there is serotonin loss in normal aging and 

neuropsychiatric diseases of late life which may contribute to 

behavioural changes. Continuous researches over the years have found 

that instead of malfunction of single neurotransmitter, AD is a 

multineurotransmitter deficit thus role of other neurotransmitter 

particularly 5HT, beside Ach needs thorough investigation. 
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Introduction 

The human brain is a large, complex organ that is characterized by communication between its 

component cells, especially neurons. Other bodily organs as pancreas, gut, and adrenal glands excrete 

hormones to the blood stream and thereby communicate with cells far away. However, the 

intercellular communication of the brain has a far greater complexity and communication among 

neurons is the prerequisite for the working brain.1 

Neurotransmitters are chemicalsthat allow signal transmission andthus communication, 

among neurons. One neurotransmitterused by many neuronsthroughout the brain is serotonin,also 

known as 5-hydroxytryptamine(5-HT). Serotonin released by thesignal-emitting neuron subtly 

altersthe function of the signal-receiving neurons in a process called neuro-modulation.2 

Serotonin is an ancient biochemical manipulated through evolution to be utilized extensively 

throughout the animal and plant kingdoms. Specific 5-HT-containing neurons and ascending5-HT 

projections probably arose early in phylogeny.3In snails, leeches and molluscs, specialized 5-HT 

containing neurons have been identified.4It may appear in vertebrates, tunicates, arthropods, 

coelenterates and also in edible fruits and nuts. It may occur in diverse venoms, along with the 

common stinging nettle and in wasps and scorpions.5 

Mammals employ 5-HT as a neurotransmitter within the central and peripheral nervous 

systems and also as a local hormone in numerous other tissues, including the gastrointestinal tract, 

the cardiovascular system and immune cells. 

The discovery of serotonin can be tracedback to 1868 when it was shown that the serum of 

clotted blood contained a factor capable of causing vasoconstriction. Eventually the indolamine 

serotonin was discovered by Rapport et al. and was to havevasoconstrictor properties and to clot 

blood. Independently Erspamer had discovered a factor (calledEnteramine) in gut mucosa that was 

later shown to be identical to serotonin. Twarog page (1953) finally discoveredthat serotonin was 

present in the mammalian brain and this led others to prove the neurotransmitter role for this 

Indolamine.6 

5-HT, one of the classes of monoamine neurontransmitters, all of which have a chemical 

template comprising of a basic aminogroup separated from an aromatic nucleus by a two 

carbonaliphatic chain. In mammals, 5-HT is biosynthetically derivedby two enzymatic steps: (1) ring 

hydroxylation of theessential amino acid tryptophan by tryptophan hydroxylase,the rate-limiting step, 

1 and (2) side chain decarboxylation by aromatic amino acid decarboxylase.7 

It ismainly found in the gastrointestinal tract (about90% in enterochromaffin cells), platelets 

and inthe central nervous system of humans and animals.8It is thoroughly known contributor to 

feelings of well-being.9 

While other cells outside the brain, such as blood platelets and some enterocytes, make and/or 

use serotonin, all serotonin used by brain cells must be made within the neurons, since serotonin 

cannot cross the blood brain barrier. Therefore, the synthesis of serotonin is heavily dependent upon 

the availability of L-tryptophan (LT) within the CNS. The production and subsequent transport of LT 

from the blood stream into the CNS can be compromised by several factors: 

1) Stress, elevated cortisol levels, vitamin B6 deficiency, and even high dosages (above 2,000 mg) of 

LT, which all stimulate the conversion of LT to kynurenine, lowering serum LT levels.10,11 

 2) Elevated serum levels of kynurenine inhibit transport of LT into the CNS, and reduce CNS serotonin 

levels.12 
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3) Transport of LT across the blood brain barrier requires binding to a transport molecule, which LT 

shares with five other amino acids (tyrosine, phenylalanine, valine, leucine and isoleucine). Since LT is 

present in foods in relatively small amounts in comparison to these other amino acids, as little as one 

percent of dietary LT may be transported into the CNS.13 

4) LT is used by the body for other metabolic purposes in addition to serotonin production, including 

protein synthesis and the creation of niacin13 

Serotonin’s diverse effects are mediated by a number of receptors distributed throughout the 

body. To date, at least fourteen different serotonin receptor subtypes have been identified in 

mammals and are grouped into seven families (5-HT1–5-HT7).7 

 All of the serotonin receptors are G-protein-coupled receptors except the 5-HT3 ligand gated 

ion channel.14Most of the receptor subtypes are exclusively located postsynaptically on neurons, 

astrocytes and vascular elements while the 5-HT1 receptors in the raphe nuclei are located 

presynaptically on the soma, dendrites, and axon terminals of serotonin neurons. They have an 

autoregulatory function.1 

The binding of serotonin to its receptors initiates a series of biochemical events that converts 

the extracellular, chemical signal into an intracellular signal in the recipient cell. For example, the 

interaction of serotonin with one type of receptor stimulates the formation of small molecules (i.e., 

second messengers) within the cell. Second messengers interact with other proteins to activate 

various cellular functions, such as changes in the cell’s electrical activity or in the activity of certain 

genes. These changes can result either in the inhibition or the excitation of the signal-receiving 

neuron, depending on the cell affected.2 

Serotonin, has been implicatedin almost every conceivable physiologic or behavioural 

function—affect, aggression, appetite, cognition, emesis,endocrine function, gastrointestinal function, 

motor function, neurotrophism, perception, sensory function, sex, sleep, and vascular function.15 

Although serotonin’seffect on individual neurons can berather modest, its overall effect onthe 

neurons in a given brain area cansubstantially influence brain functionssuch as learning and 

memory,perception of the environment,mood states, and responses to alcohol and other drugs of 

abuse.2The central serotonergic system has also been implicated in many physiological processes 

including thermoregulation,16satiety,17neurogenesis18,stress response19  and aggression.20In addition, 

5-HT has been linked to motor system function,21 circadian rhythms22 respiratory stability,23 

embryonic development24 and reward processing.25 

Dysfunctional5-HT transmission has been associated with depression, panic, anxiety, 

postpartum blues, depression, obsessive-compulsive disorders, attention deficit hyperactivity 

disorder, autism, eating disorders, schizophrenia and borderline personality disorders.26,27 

Many drugs that are currently used for the treatment of psychiatric disorders (e.g., depression, 

mania, schizophrenia, autism, obsessive compulsive disorder, anxiety disorders) are thought to act, at 

least partially, through serotoninergic mechanisms. This versatile role may be attributed to serotonin 

because of 5-HTcell bodies clustered in the brainstem raphe nuclei are positionedthrough their vast 

projections to influence all regions of the neuraxis.Another answer lies in the molecular diversityand 

differential cellular distribution of the many 5-HT receptor subtypes that are expressed in brain and 

other tissues. 

Pharmacologically, the focus on the serotonin system has increased by the widespread use of 

the antidepressant medications of the class ‘selective serotonin reuptake inhibitor’ (SSRI), which 

block the serotonin transporter (5-HTT) located presynaptically on projecting serotonergicaxons, 
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thereby increasing the interstitial serotonin concentration.In addition, the 5-HT2A receptors are 

targets for medications used to treat conditions such as schizophrenia, anxiety, depression, and 

Parkinson’s disease. Moreover, most hallucinogens mediate their effects through the 5-HT2A 

receptor.28 

 

Serotonin and Alzheimer’s disease 

Alzheimer’s disease (AD) is themost commonneurodegenerativeformofdementia and aging is 

the most important risk factor for AD. Theprevalence of ADis approximately 7–10% in individuals 

over the ageof 65 and increases to about 40% over the age of 80. AD is incurableand increases the 

mortality rate by approximately 40% in men andwomen. The number of people who have AD is 

expected to doubleevery 20 years, thereby constituting significant medico- and socioeconomical 

burden.29Alzheimer’s disease can occur in people as young as 40, the prevalence increases with age, 

with up to one in four aged 85 and above suffering from this condition.30 (WHO,2002). There are now 

thought to be more than 35 million sufferers worldwide and this is expected to increase to 115 million 

by 2050.31 

AD mainly affect primarily limbic, paralimbic, and neocortical structures. At the molecular 

level, the primary abnormalities includeabnormal processing of amyloid precursor 

protein(APP),hyperphosphorylation of tau protein, and apoptotic-like celldeath.32 Intraneuronal 

neurofibrillary tangles containing tau protein, which first appear in the medial temporal lobe and 

spreads to the rest of the cortex as the disease advances.33 

Neuronal death in specific transmitter source nuclei results in deficiencies of acetylcholine, 

serotonin, and norepinephrine that contribute to the matrix of pathological changes underlying the 

clinical syndrome.34 

In this disease, the capacity to memorize is seriously reduced because of compromised 

neuronal transmission35and multiple neurotransmitter systems have been reported to be altered in 

the AD brain. Significant pyramidal neuronal loss results in diminished acetylcholine (ACh), 

epinephrine, and serotonin transmissions in the cortex and hippocampus, accounting for the 

symptoms in AD.36 

Although cholinergic and glutamatergic drugs are used for the symptomatic treatment of 

memory deficits in AD, there is a crucial need to discover new and efficient therapeutic strategies. In 

this context, serotonin receptors (5-HTR) represent promising therapeutic targets since the 

serotoninergic neurotransmission system is implicated in the modulation of learning and memory 

processes.37,38 

A well-documented decrease of 5-HT2A receptor binding is seen in PET studies of 

AD39whereas normal aging is associated with a decrease of 6-8% per decade.40 

Symptoms of depression, aggression, anxiety and disturbances in food intake and sleep are 

common in AD and serotonergic impairment is well documented in that condition.1Serotonin has been 

shown to be linked to emotional behaviour in rat.41 Thus it may be presumed that the anxiety state in 

Alzheimer’s disease may be linked with disturbed serotonergic activity.35 

Serotonergic dysfunction in AD appears to reflect a selective process rather than the result of 

generalized cortical neuronal degeneration, because other neurotransmitter systems, such as opioid, 

g-aminobutyricacid (GABA), a-1, a-2, and b-adrenergic, are unaltered or less severely affected.42,43 
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Most of the brain 5-HT is localized in the thalamus, hypothalamus, midbrain and raphe nuclei 

of the lower brain stem.44The largest collections of 5-HTneurons are in the dorsal and median raphe 

nuclei ofthe caudal midbrain.45 

Theneurons of these nuclei project widely over the thalamus,hypothalamus, basal ganglia, 

basal forebrain, andthe entire neocortex. These innervations results in 5-HT release into the 

cerebrospinalfluid (CSF) and measurement of 5-HT content in CSF in disease states will largely reflect 

this pool.46This is another interesting aspect of the 5-HTneuron innervations of forebrain. Work 

byDescarriesand colleagues47 have shown thatthe terminals of 5-HT neurons in forebrain, unlike 

terminalsfrom other systems, only infrequently form synapticcomplexes. Thus, when 5-HT neurons 

innervatingforebrain are activated, 5-HT will be released into theextracellular fluid, and its action will 

depend on the locationof nearby 5-HT receptors. The organizationof the ascending 5-HT neuron 

projections, the natureof their interaction with postsynaptic elements andthe widespread distribution 

of 5-HT terminals in corticaland limbic areas indicate that these projections are most likely to be 

involved in the regulation of behavioural state and the modulation of more specific behaviours.The 

second 5-HT neuron system is comprised of 5-HTneurons in the pontine and medullary raphe with 

projections principally to brainstem, cerebellum, and spinalcord. This system appears primarily to be 

involved inmodulation of sensory input and motor control.48 

Additionally, modulation of cholinergic neuronal activity by 5-HT may play a role in higher 

cognitive processes such as memory and learning.49,50 Accordingly,alterations in serotonergic function 

may account for behavioural disturbances commonly observed in the elderly. Indeed, changes in 

serotonergic activity have been implicated in normal aging, depression, and dementia.48 

Serotonin receptors are more dense at birth than in themature brain and may regulate the 

maturation of cortical neurons.51 

Several post mortem human studies have reported a reduction in the number of cortical 5-

HT1A, 5-HT1B/D, and 5-HT2A binding sites with age in frontal lobe, occipital lobe, and 

hippocampus.52,53 

Extra-hepatic catabolism of tryptophan along theoxidative pathway occurs via the enzyme 

indoleamine2,3-dioxygenase (IDO). Under normal conditions, IDO activity is minimal, but the 

enzymebecomes induced through pro-inflammatory cytokinessuch as interferon.54 High IDO activity 

has been observed in activated macrophages of the peripheral immune system and in activated 

microglia of the brain.55In inflammatory brain diseases includingAlzheimer’s dementia, microglia 

concomitantwith IDO will become activated, leading to anincreased degradation of tryptophan, 

thereby reducinglocal synthesis of 5-HT. 

First, reduction of 5-HT and its metaboliteshave been reported in post mortem AD brains.56The 

raphe nucleus, and area of high serotonergicneuronal density, is a preferential site for 

neurofibrillarytangle (NFT) formation and neuronal losses in AD.57There is evidenceof decreases in 

cortical 5-HT receptors, with 5-HT2Apreferentially affected over 5-HT1A receptors.58 

Post mortem brain studies of patients who had ADhave consistently found significant loss of 

serotonergic neurons or reductions in the plasma membrane serotonin transporter (5-HTT) in the 

raphe nuclei.59,60 

Further, amyloid-β (Aβ) dysregulation appears to initiate the pathogenesis of Alzheimer’s 

disease (AD) with a cascade of downstream factors that exacerbate and propagate neuronal injury.61 

Aβ can accumulate as toxic plaques and soluble oligomers in the brains of individuals with AD a 
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decade or more before the initial symptoms are identified.62 Serotonin signalling acutely reduced 

brain Aβ levels and chronically reduced Aβ plaques in a mouse model of AD.63 

The 5-HT4 receptor has its’ highest cerebral density in the basal ganglia and medium density in 

hippocampus.64 Animal studies have found procognitive and memory enhancing effects of 5-HT4 

partial agonists65,66 possibly mediated by a modulation of other neurotransmitter systems67 such as 

the dopaminergic,68GABAergic69 and acetylcholinergic systems. Thus, 5-HT4 agonists are shown to 

facilitate at least in part the release of the neurotransmitter acetylcholine in frontal cortex70 and 

hippocampus.64 

Clinical trials (phase IIb) with a partial agonist are underway for the treatment of Alzheimer’s 

disease (AD), based on the observation that 5-HT4 receptor stimulation in a transgenic mouse 

model71 increases the cerebral levels of the soluble amyloidprecursor protein (sAPPa) that is believed 

to be neuroprotective and enhance memory consolidation.72 This is achieved by diverting the cleavage 

pathway of the amyloid precursor protein, which thereby precludes the formation of the pathological 

and neurotoxic insoluble b-amyloid polypeptide,73 which is involved in Alzheimer’s disease.1 

 

Conclusion 

Serotonin shows its involvement in regulation of majority of physiological and metabolic 

processes. Although its role in pathogenesis of AD is not clear but it’s malfunctioning have been 

reported not only in AD patients but also with normal aging. Thus it become very clear that age 

associated neurodegeneration (AD) have a direct link with the normal levels of serotonin in our 

system. Thus it may be safe to conclude that targeting cholinergic system will not suffice, research 

efforts must be oriented to investigate and explore the exact role of serotonin and its possible 

therapeutic potential in treatment of Alzheimer’s disease. 
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